Recovery from maximal sprint exercise in Humans

Standard

This meticulous and careful research was carried out by Christina Karatzaferi as part of her PhD working under the supervision of Professor Anthony J Sargeant. The results confirm and validate previous published work and speculation by Tony Sargeant in 1987 (published in the Journal of Applied Physiology) showing the time course of the recovery of high energy phosphate levels in human muscle following maximum sprint exercise. In the 1987 paper it was impossible at that time to measure the PCr and ATP levels in single fibres and the conclusions were based on recovery of muscle power. The present paper was able to link this to a metabolic cause, that is the dependence upon the replenishment of the high energy phosphates in the muscle.

Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise

Authors:

Christina Karatzaferi, Arnold de Haan, Richard A Ferguson, Willem van Mechelen, Anthony J Sargeant

Pfluegers Archiv
Pfluegers Arch. 2001 Jun;442(3):467-74
The recovery of high-energy phosphate levels in single human skeletal muscle fibres following short-term maximal (all-out) exercise was investigated. Three male volunteers exercised maximally for 25 s on an isokinetic cycling ergometer. Muscle biopsy samples from the vastus lateralis were collected at rest, immediately post-exercise and at 1.5 min of recovery. The subjects also performed a second exercise bout 1.5 min after the first, on a separate occasion. Single muscle fibres were dissected, characterized and assigned to one of four groups according to their myosin heavy chain (MyHC) isoform content; namely, type I, IIA, IIAx and IIXa (the latter two groups containing either less or more than 50% IIX MyHC). Fibres were analysed for adenosine 5′-triphosphate (ATP), inosine-5′-monophosphate (IMP), phosphocreatine (PCr) and creatine (Cr) levels. Type I fibres had a lower Cr content than type II fibres (P<0.01). Within type II fibres resting [PCr] increased with increasing MyHC IIX isoform content (r=0.59, P<0.01). Post-exercise [PCr] was very low in all fibre groups (P<0.01 versus rest) while great reductions in ATP were also observed (P<0.01 versus rest), especially in the type II fibre groups. [PCr] at 1.5 min of recovery was still lower compared to rest for all fibre groups (P<0.01) especially in the IIAx and IIXa fibres
Advertisements

Human Muscle fatigue in short term sprint exercise

Standard

Christina Karatzaferi was a talented and very hard working Greek PhD student working in Amsterdam under the supervision of Professor Anthony J Sargeant. The meticulous and time consuming work that she carried out was part of a research programme into human muscle fatigue pursued by Tony Sargeant over many years.

The results show how human muscle fatigue in very short sprint exercise (10 second) is associated with the reduction of high energy phosphate in a small number of fibres in the exercising muscle. Thus the loss of power (that is fatigue) is not attributable to a failure of the whole muscle in the sprint but of a relatively small number of fatigue sensitive fibres.

————————————————————————

Metabolism changes in single human fibres during brief maximal exercise

Authors: Christina Karatzaferi, Arnold de Haan, Willem van Mechelen, Anthony J Sargeant,

Published in:

Experimental Physiology

Exp Physiol. 2001 May;86(3):411-5
Abstract
Changes in high-energy phosphate levels in single human skeletal muscle fibres after 10 s of maximal (all-out) dynamic exercise were investigated. Muscle biopsies from vastus lateralis of two volunteers were collected at rest and immediately post exercise. Single muscle fibres were dissected from dry muscle and were assigned into one of four groups according to their myosin heavy chain (MyHC) isoform content: that is type I, IIA, IIAx and IIXa (the latter two groups containing either less or more than 50% IIX MyHC). Fragments of characterised fibres were analysed by HPLC for ATP, inosine-monophosphate (IMP), phosphocreatine (PCr) and creatine levels. After 10 s of exercise, PCr content ([PCr]) declined by approximately 46, 53, 62 and 59 % in type I, IIA, IIAx and IIXa fibres, respectively (P < 0.01 from rest). [ATP] declined only in type II fibres, especially in IIAx and IIXa fibres in which [IMP] reached mean values of 16 +/- 1 and 18 +/- 4 mmol (kg dry mass)(-1), respectively. While [PCr] was reduced in all fibre types during the brief maximal dynamic exercise, it was apparent that type II fibres expressing the IIX myosin heavy chain isoform were under a greatest metabolic stress as indicated by the reductions in [ATP].

How Strong is Human Muscle?

Standard

This research was seeking to estimate the true maximum force that human muscle could generate. Professor Anthony J Sargeant wants the reader to understand that answering this question is not as simple as it seems!

In vivo specific tension of human skeletal muscle

Constantinos N Maganaris, Vasilios Baltzopoulos, Derek Ball, Anthony J Sargeant.

Journal of Applied Physiology
J Appl Physiol. 2001 Mar;90(3):865-72
Abstract
In this study, we estimated the specific tensions of soleus (Sol) and tibialis anterior (TA) muscles in six men. Joint moments were measured during maximum voluntary contraction (MVC) and during electrical stimulation. Moment arm lengths and muscle volumes were measured using magnetic resonance imaging, and pennation angles and fascicular lengths were measured using ultrasonography. Tendon and muscle forces were modeled. Two approaches were followed to estimate specific tension. First, muscle moments during electrical stimulation and moment arm lengths, fascicular lengths, and pennation angles during MVC were used (data set A). Then, MVC moments, moment arm lengths at rest, and cadaveric fascicular lengths and pennation angles were used (data set B). The use of data set B yielded the unrealistic specific tension estimates of 104 kN/m(2) in Sol and 658 kN/m(2) in TA. The use of data set A, however, yielded values of 150 and 155 kN/m(2) in Sol and TA, respectively, which agree with in vitro results from fiber type I-predominant muscles. In fact, both Sol and TA are such muscles. Our study demonstrates the feasibility of accurate in vivo estimates of human muscle intrinsic strength

Spinal cord injuries – paralysed leg muscles

Standard

HL Gerrits carried out this research under the direction of Professor Anthony J Sargeant (Amsterdam) and Professor Maria Hopman (Nijmegen). It was part of a research collaboration on spinal cord injury between the two Universities (Vrije University Amsterdam, and the Radboud University, Nijmegen – in the Netherlands). Ms Gerrits went on to submit this published research paper as a chapter in her PhD thesis submitted under the supervision of Professor Tony Sargeant in the Vrije University.

 

Reproducibility of contractile properties of the human paralysed and non-paralysed quadriceps muscle

Gerrits HL, Maria T Hopman, Anthony J Sargeant, Arnold de Haan.

Clinical Physiology

Clin Physiol. 2001 Jan;21(1):105-13

Abstract
This study assessed the reproducibility of electrically evoked, isometric quadriceps contractile properties in eight people with spinal cord injury (SCI) and eight able-bodied (AB) individuals. Over all, the pooled coefficients of variation (CVps) in the SCI group were significantly lower (ranging from 0.03 to 0.15) than in the AB group (ranging from 0.08 to 0.21) (P<0.05). Furthermore, in all subjects, the variability of force production increased as stimulation frequency decreased (P<0.01). In subjects with SCI, variables of contractile speed are clearly less reproducible than tetanic tension or resistance to fatigue. Contractile properties of quadriceps muscles of SCI subjects were significantly different from that of AB subjects. Muscles of people with SCI were less fatigue resistant (P<0.05) and produced force-frequency relationships that were shifted to the left, compared with AB controls (P<.01). In addition, fusion of force responses resulting from 10 Hz stimulation was reduced (P<.05) and speed of contraction (but not relaxation) was increased (P<0.05), indicating an increased contractile speed in paralysed muscles compared with non-paralysed muscles. These results correspond with an expected predominance of fast glycolytic muscle fibres in paralysed muscles. It is concluded that quadriceps dynamometry is a useful technique to study muscle function in non-paralysed as well as in paralysed muscles. Furthermore, these techniques can be reliably used, for example, to assess therapeutic interventions on paralysed muscles provided that expected differences in relative tetanic tension and fatigue resistance are larger than approximately 5% and differences in contractile speed are larger than approximately 15%

Calculating the efficiency of human muscle depends on knowing the Total Power generated in exercise

Standard

In order to calculate mechanical efficiency during human exercise the total power generated needs to be known. That is the external power delivered to some ergometer plus the internal power required to move the limb. This research carried out in Copenhagen in collaboration with Jens Bangsbo and Per Aagaard addresses this problem. The research publication formed part of the PhD thesis of Richard Ferguson which work was directed by Derek Ball and Professor Anthony J Sargeant.

Total power output generated during dynamic knee extensor exercise at different contraction frequencies

Richard A Ferguson, Per Aagaard, Derek Ball, Anthony J Sargeant, Jens Bangsbo

Journal of Applied Physiology

J Appl Physiol. 2000 Nov;89(5):1912-18

Abstract
A novel approach has been developed for the quantification of total mechanical power output produced by an isolated, well-defined muscle group during dynamic exercise in humans at different contraction frequencies. The calculation of total power output comprises the external power delivered to the ergometer (i.e., the external power output setting of the ergometer) and the “internal” power generated to overcome inertial and gravitational forces related to movement of the lower limb. Total power output was determined at contraction frequencies of 60 and 100 rpm. At 60 rpm, the internal power was 18+/- 1 W (range: 16-19 W) at external power outputs that ranged between 0 and 50 W. This was less (P<0.05) than the internal power of 33+/-2 W (27-38 W) at 100 rpm at 0-50 W. Moreover, at 100 rpm, internal power was lower (P<0.05) at the higher external power outputs. Pulmonary oxygen uptake was observed to be greater (P<0.05) at 100 than at 60 rpm at comparable total power outputs, suggesting that mechanical efficiency is lower at 100 rpm. Thus a method was developed that allowed accurate determination of the total power output during exercise generated by an isolated muscle group at different contraction frequencies

Human Achilles Tendon – in-vivo estimates of the moment arm

Standard

This research publication by (now Professor) Costis Maganaris as first author was an important technical analysis which formed part of his PhD thesis which was jointly supervised by Professor Vasilios Baltzopoulos and Professor Anthony J Sargeant

In vivo measurement-based estimations of the human Achilles tendon moment arm

Costis N Maganaris, Vasilios Baltzopoulos, Anthony J Sargeant.

European Journal of Applied Physiology

Eur J Appl Physiol. 2000 Nov;83(4 -5):363-9

Abstract
The aim of the present study was to estimate and compare in vivo measurement-based Achilles tendon moment arm lengths at rest and during isometric plantarflexion maximum voluntary contraction (MVC) using the centre-of-rotation (COR) and the tendon-excursion (TE) methods. Both methods were based on morphometric analysis of sagittal-plane magnetic resonance images of the foot. Using the COR method, moment arms were obtained at ankle angles from 15 degrees of dorsiflexion to 30 degrees of plantarflexion in steps of 15 degrees, digitizing the perpendicular distance from a moving centre of rotation in the tibio-talar joint to the Achilles tendon action line. The TE method was based on measurement of calcaneal displacement along the tibial axis during 15 degrees rotations of the ankle joint, from 30 degrees of dorsiflexion to 45 degrees of plantarflexion. The two methods gave similar estimations at rest varying from 4.3 to 5.6 cm. Using the COR method, the Achilles tendon moment arm during MVC was larger by 1-1.5 cm (22-27%, P < 0.01) than the respective resting value. In contrast, no difference (P > 0.05) was found between the resting and MVC moment arm estimations of the TE method. The disagreement in moment arms during MVC may be attributed to differences in the assumptions made between the two methods. The TE method has more limitations than the COR method and its estimations during MVC should be treated with caution. Resting Achilles tendon moment arm estimations of the COR method should be multiplied by 1.22-1.27 when maximal isometric plantarflexion joint moments, musculotendon forces and stresses are predicted using modelling

Functional Electrical Stimulation of leg muscles in people with spinal cord injury

Standard

This research publication in the medical journal ‘Spinal Cord’ formed part of a research programme carried out by HL Gerrits under the direction and supervision of Professor Maria Hopman of Radboud University of Nijmegen, Professor Anthony J Sargeant and Arnold de Haan of the Vrije University of Amsterdam. The publication formed a chapter in the PhD thesis of Ms Gerrits.

Altered contractile properties of the quadriceps muscle in people with spinal cord injury following functional electrical stimulated cycle training

Gerrits HL, Arnold de Haan, Anthony J Sargeant, Dallmeijer A, Maria T Hopman.

Spinal Cord. 2000 Apr;38(4):214-223

Abstract
STUDY DESIGN: A longitudinal training study.
OBJECTIVES: To assess if contractile speed and fatigability of paralysed quadriceps muscles in individuals with spinal cord injury (SCI) can be altered by functional electrical stimulation leg cycle ergometry (FES-LCE) training.
SETTINGS: The Sint Maartenskliniek rehabilitation centre and the University of Nijmegen, Nijmegen, the Netherlands.
METHODS: Contractile properties of the quadriceps muscle were studied in seven people with motor-complete SCI who participated in a FES-LCE training program. Subjects trained for 30 min, three times per week for 6 weeks. Contractile speed and fatigue characteristics of electrically stimulated isometric contractions were compared before and after 6 weeks of FES-LCE.
RESULTS: Fatigue resistance improved following FES-LCE training as indicated by the higher forces maintained in response to repetitive electrical stimulation. In contrast with an improved fatigue resistance, the maximal rate of force rise was unaffected, the speed of relaxation increased and the fusion of a 10 Hz force signal decreased. Furthermore, the force-frequency relationship shifted to the right at low stimulation frequencies, indicated by a decline in the ratio of 1 and 100 Hz force responses as well as the ratio of 10 and 100 Hz force responses.
CONCLUSION: FES-LCE training can change the physiological properties of the quadriceps muscle in people with SCI. Even after a short period of training, the stimulated muscles become more resistant to fatigue. Furthermore, the increased speed of relaxation and associated decreased fusion and altered force-frequency relationship following training may be related to adaptations in the calcium handling processes, which reflect an early response of long-term disused muscles.