The electrical stimulation of leg muscles (including FES) of people with Spinal cord injury will be affected by the temperature of the muscle

Standard

This research publication formed part of the PhD thesis of H.L. Gerrits who was directed by a team of colleagues from the Vrije Universiteit of Amsterdam headed by Professor Anthony J Sargeant and Professor Maria Hopman from the Radboud University Nijmegen. The paper shows that (the typically) low muscle temperatures in the limbs of people with spinal cord injury will change the the contractile properties of the muscles when functional electrical stimulation is applied or the muscle properties are assessed in the laboratory.

Influence of muscle temperature on the contractile properties of the quadriceps muscle in humans with spinal cord injury

H. L. GERRITS, ARNOLD DE HAAN, MARIA T HOPMAN, LUC H. V. VAN DER WOUDE, ANTHONY J SARGEANT.

Clinical Science
Clin Sci (Lond). 2000 Jan;98(1):31-8
Abstract
Low muscle temperature in paralysed muscles of individuals with spinal cord injury may affect the contractile properties of these muscles. The present study was therefore undertaken to assess the effects of increased muscle temperature on the isometric contractile properties of electrically stimulated paralysed quadriceps muscles. When muscle temperature at a depth of 3 cm was increased from approximately 32 degrees C to approximately 36 degrees C by ultra-short-wave application, the half-relaxation time shortened and low-frequency force responses became less fused, but the maximal rate of increase in force remained unchanged. Heating had no effect upon either force decline or slowing of relaxation during fatiguing contractions. The force-frequency relationship of the paralysed quadriceps muscle was shifted to the right after the muscle was heated. Despite this shift, however, the relationship still resembled that in muscles of non-paralysed individuals, probably due to the unexplained high twitch forces. These results indicate that reduced muscle temperature in spinal-cord-injured individuals may lead to an underestimation of the changes in contractile properties in terms of relaxation rate or the degree of fusion with low-frequency stimulation. In addition, the force-frequency relationship of paralysed muscles does not accurately reflect the magnitude of these changes, even when the muscle is heated, and should therefore be treated with caution.
Advertisements

Prior activation can change the maximum power generated by skeletal muscle

Standard

Fabio Abbate was a PhD student working under the direction of Professor Anthony J Sargeant in Amsterdam. This was one of a number of research papers published in eminent scientific journals which formed part of Fabio Abbate’s PhD thesis successfully submitted at the Vrije Universiteit of Amsterdam.

Effects of high-frequency initial pulses and posttetanic potentiation on power output of skeletal muscle

F. Abbate, Anthony J Sargeant, P. W. L. Verdijk, Arnold de Haan

Journal of Applied Physiology
J Appl Physiol. 2000 Jan;88(1):35-40.
Abstract
The effects of high-frequency initial pulses (HFIP) and posttetanic potentiation on mechanical power output during concentric contractions were examined in the in situ medial gastrocnemius of the rat with an intact origin on the femur and blood supply. Stimulation of the muscle was performed via the severed sciatic nerve. In the experiments, HFIP or the potentiating tetanus was followed by a stimulation of 80, 120, or 200 Hz. The results showed that both HFIP and the tetanus increased power output at high contraction velocities (>75 mm/s) when followed by a train of 80 or 120 Hz (200 Hz resulted in no effects). Mechanical power output was increased maximally by HFIP to 120 and 168% by the tetanus. Furthermore, when HFIP or the tetanus were followed by a train of 80 Hz, the peak power in the power-velocity curve tended to be shifted to a higher velocity.

Optimum pedalling rates in cycling

Standard

The data for this research publication was collected in Amsterdam by Jerzy Zoladz and Arno Rademaker working under the supervision of Professor Anthony J Sargeant. The concept of optimum movement frequencies in human locomotion had been a long standing interest of Tony Sargeant’s and the results from this study build on earlier studies. It is concluded that choosing a high pedalling rate (around 100 revs/min) when performing high intensity cycling exercise may be beneficial since it provides greater reserve in power generating capability and this may be advantageous to the muscle in terms of resisting fatigue.

Human muscle power generating capability during cycling at different pedalling rates

Jerzy A Zoladz, Arno C H J Rademaker, and Anthony J Sargeant

Experimental Physiology

Exp Physiol. 2000 Jan;85(1):117-24

Abstract
The effect of different pedalling rates (40, 60, 80, 100 and 120 rev min-1) on power generating capability, oxygen uptake (O2) and blood lactate concentration [La]b during incremental tests was studied in seven subjects. No significant differences in O2,max were found (mean +/- S.D., 5.31 +/- 0.13 l min-1). The final external power output delivered to the ergometer during incremental tests (PI,max) was not significantly different when cycling at 60, 80 or 100 rev min-1 (366 +/- 5 W). A significant decrease in PI,max of 60 W was observed at 40 and 120 rev min-1 compared with 60 and 100 rev min-1, respectively (P < 0.01). At 120 rev min-1 there was also a pronounced upward shift of the O2-power output (O2-P) relationship. At 50 W O2 between 80 and 100 rev min-1 amounted to +0.43 l min-1 but to +0.87 l min-1 between 100 and 120 rev min-1. The power output corresponding to 2 and 4 mmol l-1 blood lactate concentration (P[La]2 and P[La]4 ) was also significantly lower (> 50 W) at 120 rev min-1 (P < 0.01) while pedalling at 40, 60, 80 and 100 rev min-1 showed no significant difference. The maximal peak power output (PM, max) during 10 s sprints increased with pedalling rate up to 100 rev min-1. Our study indicates that with increasing pedalling rate the reserves in power generating capability increase, as illustrated by the PI,max/PM,max ratio (54.8, 44.8, 38.1, 34.6, 29.2%), the P[La]4/PM,max ratio (50.4, 38.9, 31.0, 27.7, 22.9%) and the P[La]2/PM,max ratio (42.8, 33.5, 25.6, 23.1, 15.6%) increases.
Taking into consideration the O2,max, the PI,max and the reserve in power generating capability we concluded that choosing a high pedalling rate when performing high intensity cycling exercise may be beneficial since it provides greater reserve in power generating capability and this may be advantageous to the muscle in terms of resisting fatigue. However, beyond 100 rev min-1 there is a decrease in external power that can be delivered for an given O2 with an associated earlier onset of metabolic acidosis and clearly this will be disadvantageous for sustained high intensity exercise.

Effect of Muscle Temperature on Human Muscle Function

Standard

This research was initiated by Professor Anthony Sargeant and Professor David Jones and carried out in Amsterdam.

Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle

de Ruiter CJ, David A Jones, Anthony J Sargeant, Arnold de Haan.

Experimental Physiology

Exp Physiol. 1999 Nov;84(6):1137-50

Abstract
The purpose of the present study was to investigate the effect of temperature on the rates of isometric force development and relaxation in electrically activated fresh and fatigued human adductor pollicis muscle. Following immersion of the lower arm for 20 min in water baths of four different temperatures, muscle temperatures were approximately 37, 31, 25 and 22 C. Maximal isometric force was reduced by 16.8 +/- 1.5 % at 22 C. The stimulation frequency-force and -rate of force development relationships were shifted to the left at lower temperatures. Q10 values for the maximal rates of force development and relaxation, and the times for 100 to 50 % and 50 to 25 % force relaxation, were about 2.0 between 37 and 25 C and about 3.8 between 25 and 22 C. However, the time for 50 to 25 % force relaxation had a relatively high Q10 value between 25 and 22 C (6.9) and this parameter also appeared to be more sensitive to fatigue compared to the other indices of relaxation. Nevertheless, the effect of fatigue on all parameters decreased with cooling over the entire (37-22 C) temperature range

Changes in mechanical leverage of muscles occur as a result of contraction making modelling uncertain

Standard

Part of an important series of research publications by the talented Costis Maganaris (now a deservedly full professor in his own right) as part of his PhD which was supervised by Professors Anthony Sargeant and Vasilios Baltzopoulos

Changes in the tibialis anterior tendon moment arm from rest to maximum isometric dorsiflexion: in vivo observations in man

Costis N Maganaris, Vassilios Baltzopoulos, Anthony J Sargeant.

Clinical Biomechanics
Clin Biomech (Bristol, Avon). 1999 Nov;14(9):661-6
Abstract
OBJECTIVE: In the present study, we examined the hypothesis that the tibialis anterior tendon moment arm increases during maximum isometric dorsiflexion as compared with rest.
BACKGROUND: In musculoskeletal modelling applications, moment arms from passive muscles at rest are assumed representative of those measured during isometric muscle contraction. The validity of this assumption is questionable in musculotendon actuators enclosed by retinacular systems as in tibialis anterior.
DESIGN AND METHODS: Sagittal-plane magnetic resonance images of the right ankle were taken in six subjects at rest and during maximum isometric dorsiflexion at six ankle angles between dorsiflexion and plantarflexion having the body placed in the supine position and the knee flexed at 90 degrees. Instant centres of rotation in the tibio-talar joint, tibialis anterior tendon action lines and moment arms were identified in the sagittal plane at ankle angles of -15 degrees, 0 degrees,+15 degrees and +30 degrees at rest and during maximum isometric dorsiflexion.
RESULTS: At any given ankle angle, the tibialis anterior tendon moment arm during maximum isometric dorsiflexion increased by 0.9-1.5 cm (P<0.01) compared with rest. This was attributed to a displacement of both tibialis anterior tendon action line by 0.8-1.2 cm (P<0.01) and all instant centres of rotation by 0.3-0.4 cm (P<0. 01) distally in relation to their corresponding resting positions.
CONCLUSIONS AND IMPLICATIONS: The assumption that the tibialis anterior tendon moment arm does not change from rest to maximum isometric dorsiflexion is invalid. Erroneous tendon forces, muscle stresses and joint moments by as much as 30% would be calculated using resting tibialis anterior tendon moment arms in the moment equilibrium equation around the ankle joint during maximum isometric dorsiflexion. RELEVANCE: A substantial increase in the tibialis anterior tendon moment arm occurs from rest to maximum isometric dorsiflexion. This needs to be taken into consideration when using planimetric musculoskeletal modelling for analysing maximal static ankle dorsiflexion loads.

Spinal cord injury in humans – Functional Electrical Stimulation

Standard

This research formed part of the PhD thesis of HL (Karin) Gerrits which was directed by Professor Anthony J Sargeant together with Maria Hopman, David Jones and others.

The results may be useful to optimize stimulation characteristics for functional electrical stimulation and to monitor training effects induced by electrical stimulation during rehabilitation of paralyzed muscles.

Contractile properties of the quadriceps muscle in individuals with spinal cord injury

Gerrits HL, Arnold de Haan, Maria T Hopman, Luc H van Der Woude, David A Jones, Anthony J Sargeant

Muscle Nerve. 1999 Sep;22(9):1249-56

Abstract
Selected contractile properties and fatigability of the quadriceps muscle were studied in seven spinal cord-injured (SCI) and 13 able-bodied control (control) individuals. The SCI muscles demonstrated faster rates of contraction and relaxation than did control muscles and extremely large force oscillation amplitudes in the 10-Hz signal (65 +/- 22% in SCI versus 23 +/- 8% in controls). In addition, force loss and slowing of relaxation following repeated fatiguing contractions were greater in SCI compared with controls. The faster contractile properties and greater fatigability of the SCI muscles are in agreement with a characteristic predominance of fast glycolytic muscle fibers. Unexpectedly, the SCI muscles exhibited a force-frequency relationship shifted to the left, most likely as the result of relatively large twitch amplitudes. The results indicate that the contractile properties of large human locomotory muscles can be characterized using the approach described and that the transformation to faster properties consequent upon changes in contractile protein expression following SCI can be assessed. These measurements may be useful to optimize stimulation characteristics for functional electrical stimulation and to monitor training effects induced by electrical stimulation during rehabilitation of paralyzed muscles.

Force-velocity relationship of human muscle

Standard

The research idea for this study came from Professor Anthony J Sargeant of Amsterdam and Professor David Jones (Birmingham University). It was the culmination of many years of Tony Sargeant encouraging members of his research group in Amsterdam to adapt a technique for studying rat muscle force velocity to small human hand muscles. The data was finally collected by Jo de Ruiter a post-doc in the Amsterdam research group.

The measurement of force/velocity relationships of fresh and fatigued human adductor pollicis muscle.

CJ De Ruiter, David A Jones, Anthony J Sargeant, Arnold de Haan.

European Journal of Applied Physiology
Eur J Appl Physiol Occup Physiol. 1999 Sep;80(4):386-93
The purpose of the study was to obtain force/velocity relationships for electrically stimulated (80 Hz) human adductor pollicis muscle (n = 6) and to quantify the effects of fatigue. There are two major problems of studying human muscle in situ; the first is the contribution of the series elastic component, and the second is a loss of force consequent upon the extent of loaded shortening. These problems were tackled in two ways. Records obtained from isokinetic releases from maximal isometric tetani showed a late linear phase of force decline, and this was extrapolated back to the time of release to obtain measures of instantaneous force. This method gave usable data up to velocities of shortening equivalent to approximately one-third of maximal velocity. An alternative procedure (short activation, SA) allowed the muscle to begin shortening when isometric force reached a value that could be sustained during shortening (essentially an isotonic protocol). At low velocities both protocols gave very similar data (r2 = 0.96), but for high velocities only the SA procedure could be used. Results obtained using the SA protocol in fresh muscle were compared to those for muscle that had been fatigued by 25 s of ischaemic isometric contractions, induced by electrical stimulation at the ulnar nerve. Fatigue resulted in a decrease of isometric force [to 69 (3)%], an increase in half-relaxation time [to 431 (10)%], and decreases in maximal shortening velocity [to 77 (8)%] and power [to 42 (5)%].
These are the first data for human skeletal muscle to show convincingly that during acute fatigue, power is reduced as a consequence of both the loss of force and slowing of the contractile speed