Effect of muscle warming on sprint power of humans

This research by demonstrated for the first time that the magnitude of the effect of warming up human muscle on sprint power depended on the speed of movement. Thus, the faster the speed of movement the greater was the benefit of warm-up.

The study was made possible by the development of the isokinetic cycle ergometer which allowed the pedalling rate to be held constant during an all-out sprint effort. [seeĀ Anthony J Sargeant, Elizabeth Hoinville, Archie Young (1981)]

European Journal of Applied Physiology
Eur J Appl Physiol Occup Physiol. 1987;56(6):693-8

The effect of changing muscle temperature on performance of short term dynamic exercise in man was studied.

Four subjects performed 20 s maximal sprint efforts at a constant pedalling rate of 95 crank rev.min-1 on an isokinetic cycle ergometer under four temperature conditions: from rest at room temperature; and following 45 min of leg immersion in water baths at 44; 18; and 12 degrees C.


Muscle temperature (Tm) at 3 cm depth was respectively 36.6, 39.3, 31.9 and 29.0 degrees C. After warming the legs in a 44 degrees C water bath there was an increase of approximately 11% in maximal peak force and power (PPmax) compared with normal rest while cooling the legs in 18 and 12 degrees C water baths resulted in reductions of approximately 12% and 21% respectively. Associated with an increased maximal peak power at higher Tm was an increased rate of fatigue.

Two subjects performed isokinetic cycling at three different pedalling rates (54, 95 and 140 rev.min-1) demonstrating that the magnitude of the temperature effect was velocity dependent: At the slowest pedalling rate the effect of warming the muscle was to increase PPmax by approximately 2% per degree C but at the highest speed this increased to approximately 10% per degree C.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s