Effect of temperature in paralysed muscles of people with spinal cord injury

Standard
HL Gerrits collected this research data on spinal cord injured people as part of her PhD supervised by Professor Anthony Sargeant. One problem encountered in trying to assess any training induced changes in the contractile properties of the paralysed muscles using electrical stimulation is that the muscles can be colder than normal as a consequence of circulatory changes.
Clinical Science
Clin Sci (Lond). 2000 Jan;98(1):31-8

Low muscle temperature in paralysed muscles of individuals with spinal cord injury may affect the contractile properties of these muscles. The present study was therefore undertaken to assess the effects of increased muscle temperature on the isometric contractile properties of electrically stimulated paralysed quadriceps muscles. When muscle temperature at a depth of 3 cm was increased from approximately 32 degrees C to approximately 36 degrees C by ultra-short-wave application, the half-relaxation time shortened and low-frequency force responses became less fused, but the maximal rate of increase in force remained unchanged.

Heating had no effect upon either force decline or slowing of relaxation during fatiguing contractions. The force-frequency relationship of the paralysed quadriceps muscle was shifted to the right after the muscle was heated. Despite this shift, however, the relationship still resembled that in muscles of non-paralysed individuals, probably due to the unexplained high twitch forces. These results indicate that reduced muscle temperature in spinal-cord-injured individuals may lead to an underestimation of the changes in contractile properties in terms of relaxation rate or the degree of fusion with low-frequency stimulation. In addition, the force-frequency relationship of paralysed muscles does not accurately reflect the magnitude of these changes, even when the muscle is heated, and should therefore be treated with caution.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s