Measuring the forces on pedals during cycling

Anita Beelen was an outstanding PhD student supervised by Anthony Sargeant who presented this research paper as part of the methodology used for her PhD thesis at the Vrije University of Amsterdam. Frank Wijkhuizen was the technician who helped to design and build the equipment in the electrical and engineering workshop of the Academic Medical Centre in Amsterdam.
European Journal of Applied Physiology
Eur J Appl Physiol Occup Physiol. 1994;68(2):177-81

An isokinetic cycle ergometer has been developed to measure power output generated over a wide range of constant velocities. The ergometer system has two operating modes and it can be instantly switched from one to another. In its conventional mode the cycle ergometer is connected to a conventional electrically braked cycle ergometer so that the subjects can perform submaximal steady-state exercise.

For maximal power measurements the system can be instantly switched to an isokinetic control mechanism which allows a constant pedalling rate to be set in the range of 23-180 rev.min-1. In both operating modes the forces generated on the pedals are monitored by strain-gauges mounted inside the pedals. This enables information to be obtained regarding the direction of forces generated at the foot-pedal interface. The output from the strain-gauges was A-D converted and stored along with data giving pedal and crank position. Data was sampled 150 times in each revolution of the crank. Force data are usually analysed for maximal peak power (highest instantaneous power generated during each revolution), mean power (power generated over a complete revolution), extension and flexion power (power generated during leg extension and leg flexion respectively). This system allows characterisation of the relationship between maximal leg power and pedalling rate, both under control and exercise-induced potentiation and fatigue conditions. Thus it is possible for example to quantify instantly the magnitude of fatigue induced by preceding dynamic exercise of a given duration, intensity or contraction velocity.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s