Strength of leg muscles in human – effects of coactivation of antagonistic muscles

Standard

This research was part of work completed by the brilliant PhD student, Costis Maganaris (now a full Professor in Liverpool), who was supervised by Professor Vasilios Baltzopoulos and Anthony Sargeant.

Differences in human antagonistic ankle dorsiflexor coactivation between legs; can they explain the moment deficit in the weaker plantarflexor leg

CONSTANTINOS N. MAGANARIS, VASILIOS BALTZOPOULOS, ANTHONY J. SARGEANT

Experimental Physiology
Exp Physiol. 1998 Nov;83(6):843-55
The present study examined the hypothesis that the antagonistic ankle dorsiflexor coactivation level during maximum isometric voluntary plantarflexion (MVC) is a function of ankle angle.
Six male subjects generated plantarflexion and dorsiflexion MVC trials at ankle angles of -15 deg (dorsiflexed direction), 0 deg (neutral position), +15 deg (plantarflexed direction) and +30 deg having the knee flexed at an angle of 90 deg. In all contractions surface EMG measurements were taken from tibialis anterior and soleus which were considered representative muscles of all dorsiflexors and plantarflexors, respectively. Antagonistic dorsiflexor coactivation was expressed as normalized EMG and moment. Calculations of the antagonistic dorsiflexor moment were based on the tibialis anterior EMG-dorsiflexor moment relationship from contractions at 50, 40, 30, 20 and 10 % of the dorsiflexion MVC moment.
In both legs dorsiflexor coactivation level followed an open U-shaped pattern as a function of ankle angle. Differences of 9 and 14 % (P < 0.05) were found in the measured net plantarflexion MVC moment between legs at ankle angles of -15 and +30 deg, respectively. No difference (P > 0.05) was found in the calf circumference between legs. Differences were found in the antagonistic dorsiflexor coactivation between legs at ankle angles of -15 and +30 deg. In the weaker leg the antagonistic EMG measurements were higher by 100 and 45 % (P < 0.01) and the estimated antagonistic moments were higher by 70 and 43 % (P < 0.01) compared with the weaker leg at -15 and +30 deg, respectively. This finding was associated with a decreased range of motion (ROM) in the weaker leg (14 %, P < 0.01), such that no difference (P > 0.05) was found in dorsiflexor antagonistic coactivation between legs at end-range ankle angles.
The findings of the study
(i) have to be taken into consideration when estimating musculoskeletal loads in the lower extremity,
(ii) imply that stretching training can result in a stronger plantarflexion at end-range ankle angles through inhibition of the dorsiflexors, and
(iii) imply a neural drive inadequacy during a plantarflexion MVC at end-range angles
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s