Performing Sprint Exercise in the heat

Standard

This research was largely carried out by Derek Ball. It looks at the effect of heat stress on human sprinting performance and has implications for sporting activities. Derek Ball was originally a post-doctoral fellow (later Senior Lecturer) in the research group and later Institute headed by Professor Anthony J Sargeant.

Human power output during repeated sprint cycle exercise: the influence of thermal stress

Derek Ball, Burrows C , Anthony J Sargeant.

European Journal of Applied Physiology
Eur J Appl Physiol Occup Physiol. 1999 Mar;79(4):360-6
    Thermal stress is known to impair endurance capacity during moderate prolonged exercise. However, there is relatively little available information concerning the effects of thermal stress on the performance of high-intensity short-duration exercise. The present experiment examined human power output during repeated bouts of short-term maximal exercise.
    On two separate occasions, seven healthy males performed two 30-s bouts of sprint exercise (sprints I and II), with 4 min of passive recovery in between, on a cycle ergometer. The sprints were performed in both a normal environment [18.7 (1.5) degrees C, 40 (7)% relative humidity (RH; mean SD)] and a hot environment [30.1 (0.5) degrees C, 55 (9)% RH]. The order of exercise trials was randomised and separated by a minimum of 4 days. Mean power, peak power and decline in power output were calculated from the flywheel velocity after correction for flywheel acceleration.
    Peak power output was higher when exercise was performed in the heat compared to the normal environment in both sprint I [910 (172) W vs 656 (58) W; P < 0.01] and sprint II [907 (150) vs 646 (37) W; P < 0.05]. Mean power output was higher in the heat compared to the normal environment in both sprint I [634 (91) W vs 510 (59) W; P < 0.05] and sprint II [589 (70) W vs 482 (47) W; P < 0.05]. There was a faster rate of fatigue (P < 0.05) when exercise was performed in the heat compared to the normal environment. Arterialised-venous blood samples were taken for the determination of acid-base status and blood lactate and blood glucose before exercise, 2 min after sprint I, and at several time points after sprint II. Before exercise there was no difference in resting acid-base status or blood metabolites between environmental conditions. There was a decrease in blood pH, plasma bicarbonate and base excess after sprint I and after sprint II. The degree of post-exercise acidosis was similar when exercise was performed in either of the environmental conditions. The metabolic response to exercise was similar between environmental conditions; the concentration of blood lactate increased (P < 0.01) after sprint I and sprint II but there were no differences in lactate concentration when comparing the exercise bouts performed in a normal and a hot environment.
    These data demonstrate that when brief intense exercise is performed in the heat, peak power output increases by about 25% and mean power output increases by 15%; this was due to achieving a higher pedal cadence in the heat
Advertisements

Post-Polio Syndrome

Standard

The data collection and analysis of this research study was largely the work of Frans Nollet and Anita Beelen. Other senior authors provided input at various stages of planning and writing. Professor Anthony J Sargeant was the supervisor for the PhD thesis of which this work formed a part.

Disability and functional assessment in former polio patients with and without postpolio syndrome

Frans Nollet, Anita Beelen, Prins MH, Marianne de Visser, Anthony J Sargeant, Lankhorst GJ, de Jong BA 

Archives of Physical Medicine and Rehabilitation

Arch Phys Med Rehabil. 1999 Feb;80(2):136-143
Abstract
OBJECTIVES: To compare perceived health problems and disability in former polio subjects with postpolio syndrome (PPS) and those without postpolio syndrome (non-PPS), and to evaluate perceived health problems, disability, physical performance, and muscle strength.
DESIGN: Cross-sectional survey; partially blinded data collection.
SUBJECTS: One hundred three former polio subjects, aged 32 to 60yrs. This volunteer sample came from referrals and patient contacts. Criterion for PPS: new muscle weakness among symptoms.
MAIN OUTCOME MEASURES: Nottingham Health Profile (NHP), adapted D-code of the International Classification of Impairments, Disabilities and Handicaps, performance test, and muscle strength assessment.
RESULTS: PPS subjects (n = 76) showed higher scores (p < .001) than non-PPS subjects (n = 27) within the NHP categories of physical mobility, energy, and pain. On a 16-item Polio Problems List, 78% of PPS subjects selected fatigue as their major problem, followed by walking outdoors (46%) and climbing stairs (41%). The disabilities of PPS subjects were mainly seen in physical and social functioning. No differences in manually tested strength were found between patient groups. PPS subjects needed significantly more time for the performance test than non-PPS subjects and their perceived exertion was higher. Perceived health problems (NHP-PhysMobility) correlated significantly with physical disability (r = .66), performance-time (r = .54), and muscle strength (r = .38). With linear regression analysis, 54% of the NHP-PhysMobility score could be explained by the performance test (time and exertion), presence of PPS, and muscle strength, whereas strength itself explained only 14% of the NHP-PhysMobility score.
CONCLUSIONS: PPS subjects are more prone to fatigue and have more physical mobility problems than non-PPS subjects. In former polio patients, measurements of perceived health problems and performance tests are the most appropriate instruments for functional evaluation

Strength of leg muscles in human – effects of coactivation of antagonistic muscles

Standard

This research was part of work completed by the brilliant PhD student, Costis Maganaris (now a full Professor in Liverpool), who was supervised by Professor Vasilios Baltzopoulos and Anthony Sargeant.

Differences in human antagonistic ankle dorsiflexor coactivation between legs; can they explain the moment deficit in the weaker plantarflexor leg

CONSTANTINOS N. MAGANARIS, VASILIOS BALTZOPOULOS, ANTHONY J. SARGEANT

Experimental Physiology
Exp Physiol. 1998 Nov;83(6):843-55
The present study examined the hypothesis that the antagonistic ankle dorsiflexor coactivation level during maximum isometric voluntary plantarflexion (MVC) is a function of ankle angle.
Six male subjects generated plantarflexion and dorsiflexion MVC trials at ankle angles of -15 deg (dorsiflexed direction), 0 deg (neutral position), +15 deg (plantarflexed direction) and +30 deg having the knee flexed at an angle of 90 deg. In all contractions surface EMG measurements were taken from tibialis anterior and soleus which were considered representative muscles of all dorsiflexors and plantarflexors, respectively. Antagonistic dorsiflexor coactivation was expressed as normalized EMG and moment. Calculations of the antagonistic dorsiflexor moment were based on the tibialis anterior EMG-dorsiflexor moment relationship from contractions at 50, 40, 30, 20 and 10 % of the dorsiflexion MVC moment.
In both legs dorsiflexor coactivation level followed an open U-shaped pattern as a function of ankle angle. Differences of 9 and 14 % (P < 0.05) were found in the measured net plantarflexion MVC moment between legs at ankle angles of -15 and +30 deg, respectively. No difference (P > 0.05) was found in the calf circumference between legs. Differences were found in the antagonistic dorsiflexor coactivation between legs at ankle angles of -15 and +30 deg. In the weaker leg the antagonistic EMG measurements were higher by 100 and 45 % (P < 0.01) and the estimated antagonistic moments were higher by 70 and 43 % (P < 0.01) compared with the weaker leg at -15 and +30 deg, respectively. This finding was associated with a decreased range of motion (ROM) in the weaker leg (14 %, P < 0.01), such that no difference (P > 0.05) was found in dorsiflexor antagonistic coactivation between legs at end-range ankle angles.
The findings of the study
(i) have to be taken into consideration when estimating musculoskeletal loads in the lower extremity,
(ii) imply that stretching training can result in a stronger plantarflexion at end-range ankle angles through inhibition of the dorsiflexors, and
(iii) imply a neural drive inadequacy during a plantarflexion MVC at end-range angles

In vivo measurements of the triceps surae complex architecture in man: implications for muscle function

Standard

Costis Maganaris was a brilliant PhD student (now Professor) supervised by Vasilios Baltzopoulos and Professor Anthony J Sargeant. This important study published in Journal of Physiology investigated how changes in muscle architecture during muscle contraction of human triceps surae muscle complex can distort calculations of mechanical output.

In vivo measurements of the triceps surae complex architecture in man: implications for muscle function

Constantinos N Maganaris, Vasilios Baltzopoulos, Anthony J Sargeant.

Journal of Physiology
J Physiol. 1998 Oct 15;512 ( Pt 2):603-14
1. The objectives of this study were to (1) quantify experimentally in vivo changes in pennation angle, fibre length and muscle thickness in the triceps surae complex in man in response to changes in ankle position and isometric plantarflexion moment and (2) compare changes in the above muscle architectural characteristics occurring in the transition from rest to a given isometric plantarflexion intensity with the estimations of a planimetric muscle model assuming constant thickness and straight muscle fibres.
2. The gastrocnemius medialis (GM), gastrocnemius lateralis (GL) and soleus (SOL) muscles of six males were scanned with ultrasonography at different sites along and across the muscle belly at rest and during maximum voluntary contraction (MVC) trials at ankle angles of -15 deg (dorsiflexed direction), 0 deg (neutral position), +15 deg (plantarflexed direction) and +30 deg. Additional images were taken at 80, 60, 40 and 20% of MVC at an ankle angle of 0 deg.
3. In all three muscles and all scanned sites, as ankle angle increased from -15 to +30 deg, pennation increased (by 6-12 deg, 39-67%, P < 0.01 at rest and 9-16 deg, 29-43%, P < 0.01 during MVC) and fibre length decreased (by 15-28 mm, 32-34%, P < 0.01 at rest and 8-10 mm, 27-30%, P < 0.05 during MVC). Thickness in GL and SOL increased during MVC compared with rest (by 5-7 mm, 36-47%, P < 0.01 in GL and 6-7 mm, 38-47%, P < 0.01 in SOL) while thickness of GM did not differ (P > 0.05) between rest and MVC.
4. At any given ankle angle the model underestimated changes in GL and SOL occurring in the transition from rest to MVC in pennation angle (by 9-12 deg, 24-38%, P < 0.01 in GL and 9-14 deg, 25-28%, P < 0.01 in SOL) and fibre length (by 6-15 mm, 22-39%, P < 0.01 in GL and 6-8 mm, 23-24%, P < 0.01 in SOL).
5. The findings of the study indicate that the mechanical output of muscle as estimated by the model used may be unrealistic due to errors in estimating the changes in muscle architecture during contraction compared with rest

Research into human tendon properties by Costis Maganaris, Vassilios Baltzopolous and Anthony J Sargeant

Standard

Changes in Achilles tendon moment arm from rest to maximum isometric plantarflexion: In vivo observations in man

Article (PDF Available)inThe Journal of Physiology 510 ( Pt 3)(3):977-85 · August 1998with85 Reads

DOI: 10.1111/j.1469-7793.1998.977bj.x · Source: PubMed
  • 35.76 · Liverpool John Moores University
  • 38.82 · Liverpool John Moores University
  • 41.33 · VU University Amsterdam
    Abstract
    1. The purpose of the present study was to examine the effect of a plantarflexor maximum voluntary contraction (MVC) on Achilles tendon moment arm length.
    2. Sagittal magnetic resonance (MR) images of the right ankle were taken in six subjects both at rest and during a plantarflexor MVC in the supine position at a knee angle of 90 deg and at ankle angles of -30 deg (dorsiflexed direction), -15 deg, 0 deg (neutral ankle position), +15 deg (plantarflexed direction), +30 deg and +45 deg. A system of mechanical stops, support triangles and velcro straps was used to secure the subject in the above positions. Location of a moving centre of rotation was calculated for ankle rotations from -30 to 0 deg, -15 to +15 deg, 0 to +30 deg and +15 to +45 deg. All instant centres of rotation were calculated both at rest and during MVC. Achilles tendon moment arms were measured at ankle angles of -15, 0, +15 and +30 deg.
    3. At any given ankle angle, Achilles tendon moment arm length during MVC increased by 1-1.5 cm (22-27 %, P < 0.01) compared with rest. This was attributed to a displacement of both Achilles tendon by 0.6-1.1 cm (P < 0.01) and all instant centres of rotation by about 0.3 cm (P < 0.05) away from their corresponding resting positions.
    4. The findings of this study have important implications for estimating loads in the musculoskeletal system. Substantially unrealistic Achilles tendon forces and moments generated around the ankle joint during a plantarflexor MVC would be calculated using resting Achilles tendon moment arm measurements.

    Changes in Achilles tendon moment arm from rest to maximum isometric plantarflexion: In vivo observations in man (PDF Download Available). Available from: https://www.researchgate.net/publication/13623782_Changes_in_Achilles_tendon_moment_arm_from_rest_to_maximum_isometric_plantarflexion_In_vivo_observations_in_man [accessed May 1, 2017].

Functional and structural changes after disuse of human muscle – first study to quantify disuse muscle atrophy at fibre level in humans

Standard

Clinical Science and Molecular Medicine (1977) 52, 337-342. Functional and structural changes after disuse of human muscle – Authors: ANTHONY J SARGEANT,* C. T. M. DAVIES,* R. H. T. EDWARDS, C. MAUNDER AND A. YOUNG *Medical Research Council Environmental Physiology Unit, London School of Hygiene and Tropical Medicine, University of London, and Jerry Lewis Muscle Research Centre, Royal Postgraduate Medical School, Hammersmith Hospital, London

Summary

1. Seven patients who had suffered unilateral leg fracture were studied after removal of immobilizing plaster casts.

2. Leg volume measured anthropometrically was reduced by 12% in the injured leg (5.68 f 1.05 litres) compared with the uninjured (6.43 f 0.87 litres). Associated with this loss was a similar reduction in the net maximum oxygen uptake achieved in one-leg cycling, from 1.89 k 0.21 l/min in the uninjured leg to 1.57+0.18 l/min in the injured.

3. Measured by a percutaneous needle biopsy technique, a reduction of 42% was found in the cross-sectional area of the muscle fibres sampled from the vastus lateralis of the injured compared with the uninjured leg.

4. Staining for myosin adenosine triphosphatase activity showed that both type I and I1 fibres were affected, being reduced respectively from 3410 to 1840 pm2 and from 3810 to 2390 pm2 cross-sectional area.

5. Possible reasons and implications are discussed for the discrepancy between the magnitude of the difference observed in the gross measurement of leg function (maximum oxygen uptake) and structure (leg volume) as compared with the cellular level (cross-sectional fibre area).

 

Correspondence: Dr A. J. Sargeant, MRC Environmental Physiology Unit, London School of Hygiene and Tropical Medicine, University of London, Keppel Street (Gower Street), London WClE 7HT.

Introduction

Atrophy of the affected limb and loss of muscle power follows bone fracture and subsequent immobilization. Years of experience have enabled the rehabilitation professions to develop empirical programmes to reverse these changes. However, the efficacy of such programmes may be further improved if we can increase our understanding of the atrophic response to disuse in human muscle. Recent studies showed that 15 weeks immobilization in a long-leg plaster cast after fracture reduced the fat-free volume of the affected leg by 12%, which was accompanied by a similar fall in the maximum oxygen uptake ( ~oz,,,,=.) achieved with oneleg pedalling (Davies & Sargeant, 1975a,b). However, it was not known how far these changes in gross structure and function were reflected at a cellular level within the affected muscles. Since the work of pedalling is performed mainly by the leg extensors (A. J. Sargeant & C. T. M. Davies, unpublished work) needle biopsy was used (Edwards, Maunder, Lewis & Pearse, 1973) to study fibre atrophy in the quadriceps femoris muscle and to compare this with measurements of the gross leg volume and maximal oxygen uptake of patients recovering from unilateral leg fracture.

http://www.clinsci.org/content/ppclinsci/52/4/337.full.pdf