Optimum pedalling rates in cycling


The data for this research publication was collected in Amsterdam by Jerzy Zoladz and Arno Rademaker working under the supervision of Professor Anthony J Sargeant. The concept of optimum movement frequencies in human locomotion had been a long standing interest of Tony Sargeant’s and the results from this study build on earlier studies. It is concluded that choosing a high pedalling rate (around 100 revs/min) when performing high intensity cycling exercise may be beneficial since it provides greater reserve in power generating capability and this may be advantageous to the muscle in terms of resisting fatigue.

Human muscle power generating capability during cycling at different pedalling rates

Jerzy A Zoladz, Arno C H J Rademaker, and Anthony J Sargeant

Experimental Physiology

Exp Physiol. 2000 Jan;85(1):117-24

The effect of different pedalling rates (40, 60, 80, 100 and 120 rev min-1) on power generating capability, oxygen uptake (O2) and blood lactate concentration [La]b during incremental tests was studied in seven subjects. No significant differences in O2,max were found (mean +/- S.D., 5.31 +/- 0.13 l min-1). The final external power output delivered to the ergometer during incremental tests (PI,max) was not significantly different when cycling at 60, 80 or 100 rev min-1 (366 +/- 5 W). A significant decrease in PI,max of 60 W was observed at 40 and 120 rev min-1 compared with 60 and 100 rev min-1, respectively (P < 0.01). At 120 rev min-1 there was also a pronounced upward shift of the O2-power output (O2-P) relationship. At 50 W O2 between 80 and 100 rev min-1 amounted to +0.43 l min-1 but to +0.87 l min-1 between 100 and 120 rev min-1. The power output corresponding to 2 and 4 mmol l-1 blood lactate concentration (P[La]2 and P[La]4 ) was also significantly lower (> 50 W) at 120 rev min-1 (P < 0.01) while pedalling at 40, 60, 80 and 100 rev min-1 showed no significant difference. The maximal peak power output (PM, max) during 10 s sprints increased with pedalling rate up to 100 rev min-1. Our study indicates that with increasing pedalling rate the reserves in power generating capability increase, as illustrated by the PI,max/PM,max ratio (54.8, 44.8, 38.1, 34.6, 29.2%), the P[La]4/PM,max ratio (50.4, 38.9, 31.0, 27.7, 22.9%) and the P[La]2/PM,max ratio (42.8, 33.5, 25.6, 23.1, 15.6%) increases.
Taking into consideration the O2,max, the PI,max and the reserve in power generating capability we concluded that choosing a high pedalling rate when performing high intensity cycling exercise may be beneficial since it provides greater reserve in power generating capability and this may be advantageous to the muscle in terms of resisting fatigue. However, beyond 100 rev min-1 there is a decrease in external power that can be delivered for an given O2 with an associated earlier onset of metabolic acidosis and clearly this will be disadvantageous for sustained high intensity exercise.

Chronic Obstructive Lung Disease


Rik Gosselink presented this research as part of his PhD in the Vrije University of Amsterdam. The work was directed by Professor Anthony J Sargeant and Professor Marc Decramer.

Diaphragmatic breathing reduces efficiency of breathing in patients with chronic obstructive pulmonary disease

R A Gosselink

R C Wagenaar

H Rijswijk

Anthony J Sargeant

and M L Decramer

American Journal of Respiratory and Critical Care Medicine
Am J Respir Crit Care Med. 1995 Apr;151(4):1136-42
The effects of diaphragmatic breathing learning on chest wall motion, mechanical efficiency of the respiratory muscles, breathing pattern, and dyspnea sensation were studied in seven patients with severe chronic obstructive pulmonary disease (COPD) (FEV1 34 +/- 7% of the predicted value) during loaded and unloaded breathing. Chest wall motion was studied focusing on amplitude and phase relation of rib cage and abdominal motion. Mechanical efficiency was defined as the ratio of added external power output and added oxygen consumption during inspiratory threshold loading (40% maximal inspiratory pressure [Plmax]). After 2 wk run-in, all subjects participated in a diaphragmatic breathing program for 3 wk. Variables obtained during diaphragmatic breathing were compared with those obtained during natural breathing. During diaphragmatic breathing the ratio of rib cage to abdominal motion decreased significantly during unloaded (0.86 versus 0.37; p < 0.01) as well as during loaded breathing (0.97 versus 0.50; p < 0.01). Chest wall motion became more asynchronous during diaphragmatic breathing in the unloaded conditions (mean phase difference for natural breathing 3.5 versus 10.4% for diaphragmatic breathing; p < 0.02) and loaded conditions (mean phase difference for natural breathing 6 versus 11.4% for diaphragmatic breathing; p < 0.02). Surprisingly, mechanical efficiency decreased significantly during diaphragmatic breathing (2.57 +/- 0.76%) in comparison with natural breathing (3.35 +/- 1.48%; p < 0.01). Tidal volume, respiratory frequency, and duty cycle did not change significantly during diaphragmatic breathing. Dyspnea sensation tended to increase during diaphragmatic breathing.

Age Related Changes in Muscle Power

Margriet Lodder completed this work in Amsterdam as part of her PhD research under the direction of Professor Anthony Sargeant
Effect of growth on efficiency and fatigue in extensor digitorum longus muscle of the rat
Margriet A Lodder

Arnold de Haan

Anthony J Sargeant.

European Journal of Applied Physiology
Eur J Appl Physiol Occup Physiol. 1994;69(5):429-434
The effect of growth on work output, energy consumption and efficiency during repetitive dynamic contractions was determined using extensor digitorum longus muscles of 40-, 60-, 120- and 700-day-old male Wistar rats. When work output of each contraction was normalized to the work output of the first contraction it was found that work output initially increased over the first 10-20 contractions by approximately 8% in each age group. Thereafter a faster decrease in work output was found in the youngest group (approximately 2% each contraction) compared to the older groups (approximately 0.7% each contraction). After 40 contractions the reduction in work output was significantly different only between the youngest group and the two oldest groups (-30% vs -5%). These differences in fatigue were not associated with differences in adenosine 5′-triphosphate and phosphocreatine concentrations or in lactate production. Total work output and high-energy phosphate consumption increased by approximately 555% and 380% from age 40 to 120 days, respectively. Consequently, efficiency was significantly higher (approximately 32%) in the older groups compared to 40-day-old animals. Normalized for muscle mass, mean rate of high-energy phosphate consumption was similar in all groups whereas mean power output was significantly lower in the youngest group (approximately 46%). Thus, the difference in efficiency between the young and the other groups may be attributed to a lower external power production in the youngest group rather than changes in energy turnover

Effect of shortening velocity on work output and energy cost of muscle contractions

Research carried out by Margriet Lodder as part of her PhD which was supervised by Professor Tony Sargeant and Dr Arnold de Haan
European Journal of Applied Physiology
Eur J Appl Physiol Occup Physiol. 1991;62(6):430-5

The effect of shortening velocity on the reduction in work output, energy consumption and efficiency during repetitive contractions has been determined in rat extensor digitorum longus muscle. Muscles in situ (with occluded blood flow, 37 degrees C) were stimulated to perform 40 successive contractions (at 4 Hz) with a total duration of the exercise period of 10 s and shortening velocities of either 25, 50 or 75 mm.s-1 (whole muscle-tendon complex).

Care was taken that work output during the shortening phase of the first contraction was the same for the different velocities used. Total work output of the 40 contractions was not significantly different between the three groups with different shortening velocities; nor was there a significant difference in the high-energy phosphate consumption over this 10-s exercise period. However, when the ratio of total work output and total energy consumption was calculated a significantly higher efficiency (25-30% in comparison with the efficiency of the other two velocities) was found with the shortening velocity of 50 mm.s-1. There was no significant difference in efficiency between shortening velocities of 25 and 75 mm.s-1. This suggests that with this protocol efficiency showed a velocity-dependent pattern that may have the same shape as the power/velocity curve. Whereas total work output during the 10-s exercise period was not significantly different between the velocities studied, the time course of the changes in work output was quite different. With shortening velocities of 50 and 75 mm.s-1 work output initially increased by maximally 6% and 12% respectively in contrast to a steady level in the contractions with a velocity of 25 mm.s-1.(ABSTRACT TRUNCATED AT 250 WORDS)

Research into the physiology and biomechanics of swimming

Seminal research into swimming performance. An example of the wide ranging interests and scientific curiosity of Professor Anthony Sargeant. The data for this publication were collected by Huub Toussaint an extremely talented Dutch PhD student who was supported by Professor Anthony Sargeant. Initially drafts of this innovative research were extensively revised by Tony and sent back to Huub for more work. Also with the perspective and experience brought by Tony, came an instruction to place the research paper in the top applied physiology journal for such work.
Journal of Applied Physiology
J Appl Physiol. 1988 Dec;65(6):2506-12

In this study the propelling efficiency (ep) of front-crawl swimming, by use of the arms only, was calculated in four subjects. This is the ratio of the power used to overcome drag (Pd) to the total mechanical power (Po) produced including power wasted in changing the kinetic energy of masses of water (Pk). By the use of an extended version of the system to measure active drag (MAD system), Pd was measured directly.

Simultaneous measurement of O2 uptake (VO2) enabled the establishment of the relationship between the rate of the energy expenditure (PVO2) and Po (since when swimming on the MAD system Po = Pd). These individual relationships describing the mechanical efficiency (8-12%) were then used to estimate Po in free swimming from measurements of VO2. Because Pd was directly measured at each velocity studied by use of the MAD system, ep could be calculated according to the equation ep = Pd/(Pd + Pk) = Pd/Po. For the four top class swimmers studied, ep was found to range from 46 to 77%. Total efficiency, defined as the product of mechanical and propelling efficiency, ranged from 5 to 8%.

Research into the true efficiency of human movement at different muscle contraction frequencies

This research was carried out in Copenhagen by Richard Ferguson as part of a collaboration initiated by Professor Anthony Sargeant and Jens Bangsbo. Richard Ferguson was at the time a PhD student working under the supervision of Tony Sargeant and Dr Derek Ball.
Journal of Applied Physiology
J Appl Physiol. 2000 Nov;89(5):1912-8

A novel approach has been developed for the quantification of total mechanical power output produced by an isolated, well-defined muscle group during dynamic exercise in humans at different contraction frequencies. The calculation of total power output comprises the external power delivered to the ergometer (i.e. the external power output setting of the ergometer) and the “internal” power generated to overcome inertial and gravitational forces related to movement of the lower limb. Total power output was determined at contraction frequencies of 60 and 100 rpm. At 60 rpm, the internal power was 18+/- 1 W (range: 16-19 W) at external power outputs that ranged between 0 and 50 W. This was less (P<0.05) than the internal power of 33+/-2 W (27-38 W) at 100 rpm at 0-50 W. Moreover, at 100 rpm, internal power was lower (P<0.05) at the higher external power outputs. Pulmonary oxygen uptake was observed to be greater (P<0.05) at 100 than at 60 rpm at comparable total power outputs, suggesting that mechanical efficiency is lower at 100 rpm. Thus a method was developed that allowed accurate determination of the total power output during exercise generated by an isolated muscle group at different contraction frequencies

Efficiency of Human Muscle – a Collaboration between Manchester and Copenhagen

A study based on earlier work by Professor Anthony J Sargeant and carried out under his direction by Richard Ferguson his PhD student working with colleagues in Copenhagen headed up by Jens Bangsbo.
Journal of Physiology
J Physiol. 2001 Oct 1;536(Pt 1):261-71.

1. It has been established that pulmonary oxygen uptake is greater during cycle exercise in humans at high compared to low contraction frequencies. However, it is unclear whether this is due to more work being performed at the high frequencies and whether the energy turnover of the working muscles is higher.

The present study tested the hypothesis that human skeletal muscle oxygen uptake and energy turnover are elevated during exercise at high compared to low contraction frequency when the total power output is the same.

2. Seven subjects performed single-leg dynamic knee-extensor exercise for 10 min at contraction frequencies of 60 and 100 r.p.m. where the total power output (comprising the sum of external and internal power output) was matched between frequencies (54 +/- 5 vs. 56 +/- 5 W; mean +/- S.E.M.). Muscle oxygen uptake was determined from measurements of thigh blood flow and femoral arterial – venous differences for oxygen content (a-v O(2) diff). Anaerobic energy turnover was estimated from measurements of lactate release and muscle lactate accumulation as well as muscle ATP and phosphocreatine (PCr) utilisation based on analysis of muscle biopsies obtained before and after each exercise bout.

3. Whilst a-v O(2) diff was the same between contraction frequencies during exercise, thigh blood flow was higher (P < 0.05) at 100 compared to 60 r.p.m. Thus, muscle V(O2) was higher (P < 0.05) during exercise at 100 r.p.m. Muscle V(O2) increased (P < 0.05) by 0.06 +/- 0.03 (12 %) and 0.09 +/- 0.03 l min(-1) (14 %) from the third minute to the end of exercise at 60 and 100 r.p.m., respectively, but there was no difference between the two frequencies.

4. Muscle PCr decreased by 8.1 +/- 1.7 and 9.1 +/- 2.0 mmol (kg wet wt)(-1), and muscle lactate increased to 6.8 +/- 2.1 and 9.8 +/- 2.5 mmol (kg wet wt)(-1) during exercise at 60 and 100 r.p.m., respectively. The total release of lactate during exercise was 48.7 +/- 8.8 and 64.3 +/- 10.6 mmol at 60 and 100 r.p.m. (not significant, NS). The total anaerobic ATP production was 47 +/- 8 and 61 +/- 12 mmol kg(-1), respectively (NS).

5. Muscle temperature increased (P < 0.05) from 35.8 +/- 0.3 to 38.2 +/- 0.2 degrees C at 60 r.p.m. and from 35.9 +/- 0.3 to 38.4 +/- 0.3 degrees C at 100 r.p.m. Between 1 and 7 min muscle temperature was higher (P < 0.05) at 100 compared to 60 r.p.m.

6. The estimated mean rate of energy turnover during exercise was higher (P < 0.05) at 100 compared to 60 r.p.m. (238 +/- 16 vs. 194 +/- 11 J s(-1)). Thus, mechanical efficiency was lower (P < 0.05) at 100 r.p.m. (24 +/- 2 %) compared to 60 r.p.m. (28 +/- 3 %). Correspondingly, efficiency expressed as work per mol ATP was lower (P < 0.05) at 100 than at 60 r.p.m. (22.5 +/- 2.1 vs. 26.5 +/- 2.5 J (mmol ATP)(-1)). 7. The present study showed that muscle oxygen uptake and energy turnover are elevated during dynamic contractions at a frequency of 100 compared with 60 r.p.m. It was also observed that muscle oxygen uptake increased as exercise progressed in a manner that was not solely related to the increase in muscle temperature and lactate accumulation