Oxygen cost of human exercise

Standard

In this research published in Journal of Physiology Anthony Sargeant and his team describe how the recruitment of different types of muscle fibres with increasing exercise intensity changes the oxygen cost of exercise. Thus the relationship of oxygen uptake and mechanical power output is not constant. This is in contrast to the standard teaching of many physiology textbooks.

Non-linear relationship between O2 uptake and power output at high intensities of exercise in humans

Jerzy A. ZoladzArno C. H. J. RademakerAnthony J Sargeant

Journal of Physiology
J Physiol. 1995 Oct 1;488 ( Pt 1):211-7
1. A slow component to pulmonary oxygen uptake (VO2) is reported during prolonged high power exercise performed at constant power output at, or above, approximately 60% of the maximal oxygen uptake. The magnitude of the slow component is reported to be associated with the intensity of exercise and to be largely accounted for by an increased VO2 across the exercising legs.
2. On the assumption that the control mechanism responsible for the increased VO2 is intensity dependent we hypothesized that it should also be apparent in multi-stage incremental exercise tests with the result that the VO2-power output relationship would be curvilinear.
3. We further hypothesized that the change in the VO2-power output relationship could be related to the hierarchical recruitment of different muscle fibre types with a lower mechanical efficiency.
4. Six subjects each performed five incremental exercise tests, at pedalling rates of 40, 60, 80, 100 and 120 rev min-1, over which range we expected to vary the proportional contribution of different fibre types to the power output. Pulmonary VO2 was determined continuously and arterialized capillary blood was sampled and analysed for blood lactate concentration ([lactate]b).
5. Below the level at which a sustained increase in [lactate]b was observed pulmonary VO2 showed a linear relationship with power output; at high power outputs, however, there was an additional increase in VO2 above that expected from the extrapolation of that linear relationship, leading to a positive curvilinear VO2-power output relationship. 6. No systematic effect on the magnitude or onset of the ‘extra’ VO2 was found in relation to pedalling rate, which suggests that it is not related to the pattern of motor unit recruitment in any simple way.

Human performance and energy cost of lifting and lowering weight

Standard

Research carried out by Michiel de Looze and submitted as part of his PhD thesis completed in Amsterdam under the direction of Anthony Sargeant

Relationships between energy expenditure and positive and negative mechanical work in repetitive lifting and lowering

De Looze MP

Toussaint HM

Commissaris DA

Jans MP

Anthony J Sargeant.

Journal of Applied Physiology
J Appl Physiol  1994
77(1):420-426
  • Determining the separate energy costs of the positive and negative mechanical work in repetitive lifting or lowering is quite complex, as a mixture of both work components will always be involved in the up- and downward motion of the lifter’s body mass. In the current study, a new method was tested in which coefficients specifically related to the positive and negative work were estimated by multiple regression on a data set of weight-lifting and weight-lowering tasks. The energy cost was obtained from oxygen uptake measurements. The slopes of the regression lines for energy cost and mechanical work were steeper for positive than for negative work. The cost related to the negative work was approximately 0.3-0.5 times the cost of the positive work. This finding is well in line with data obtained directly from other isolated activities of either positive or negative work (e.g., ladder climbing vs. descending). However, the intercept values of the regression lines were not significantly different from zero or were even negative. This was most likely due to the metabolic energy not related to processes that yield mechanical work (e.g., isometric muscle actions) that was not constant among trials.

Cold muscles results in higher lactate levels at the beginning of exercise in humans

Standard
Research carried out by Anita Beelen as part of her programme of PhD programme under the direction of Professor Anthony Sargeant.It shows that compared to normal conditions when muscle is cold there is an initially higher level of lactate in the blood due to relative hypoxic muscle consequent upon cold induced vasoconstriction. Subsequently as the muscle warms the lactate level drops but its removal requires elevated oxygen uptake.
European Journal of Applied Physiology
Eur J Appl Physiol Occup Physiol. 1991;63(5):387-92

The effect of low muscle temperature on the response to dynamic exercise was studied in six healthy men who performed 42 min of exercise on a cycle ergometer at an intensity of 70% of their maximal O2 uptake. Experiments were performed under control conditions, that is, from rest at room temperature, and following 45 min standing with legs immersed in a water bath at 12 degrees C. The water bath reduced quadriceps muscle temperature (at 3 cm depth) from 36.4 (SD 0.5) degrees C to 30.5 (SD 1.7) degrees C. Following cooling, exercise heart rate was initially lower, the mean difference ranged from 13 (SD 4) beats.min-1 after 6 min of exercise, to 4 (SD 2) beats.min-1 after 24 min of exercise. Steady-state oxygen uptake was consistently higher (0.2 l.min-1). However, no difference could be discerned in the kinetics of oxygen uptake at the onset of exercise. During exercise after cooling a significantly higher peak value was found for the blood lactate concentration compared to that under control conditions. The peak values were both reached after approximately 9 min of exercise. After 42 min of exercise the blood lactate concentrations did not differ significantly, indicating a faster rate of removal during exercise after cooling. We interpreted these observations as reflecting a relatively higher level of muscle hypoxia at the onset of exercise as a consequence of a cold-induced vasoconstriction. The elevated steady-state oxygen uptake may in part have been accounted for by the energetic costs of removal of the extra lactate released into the blood consequent upon initial tissue hypoxia

Optimising seat height for wheelchair users

Standard
This research was carried out by Luc Van der Woude as part of his PhD in the Physiology Department headed by Professor Anthony Sargeant. The published paper describes a methodology for investigating the effect of different seat heights of wheelchairs on propulsion techniques and cardiorespiratory demand. It is an example of the wide ranging research interests of Tony Sargeant which ranged from the molecular and biochemical level to practical whole body human physiology of the type here described.
Journal of Rehabilitation Research and Development
J Rehabil Res Dev. 1989 Fall;26(4):31-50

To study the effect of seat height on the cardiorespiratory system and kinematics in handrim wheelchair ambulation, nine non-wheelchair users participated in a wheelchair exercise experiment on a motor-driven treadmill. The subjects conducted five progressive exercise tests. After an initial try-out test, four tests were performed at different standardized seat heights of 100, 120, 140, and 160 degrees elbow extension (subject sitting erect, hands on the rim in top-dead-center = 12.00 hrs; full extension = 180 degrees). Each test consisted of four 3-minute exercise blocks at speeds of respectively 0.55, 0.83, 1.11, and 1.39 m.s-1 (2-5 km.hr-1). Analysis of variance revealed significant effects of seat height (P less than 0.05) on gross mechanical efficiency (ME), oxygen cost, push range, and push duration, and on the ranges of motion in the different arm segments and trunk. Mean ME appeared higher at the lower seat heights of 100 and 120 degrees elbow extension. This is reflected in an enhanced oxygen consumption at seat heights of 140 and 160 degrees elbow extension. Simultaneously, the push range showed a 15 to 20 degree decrease with increasing seat height, which is reflected in a decreased push duration. In the push phase, decreases in retroflexion and abduction/adduction of the upper arm were seen. The trunk shifted further forward, and the motion range in the elbow joint shifted to extension with increasing seat height. No shifts in minimum and maximum angular velocities were seen with increasing seat height. The results showed an interrelationship between wheelchair seat height and both cardiorespiratory and kinematic parameters. With respect to the cardiorespiratory system, the optimization of the wheelchair geometry, based on functional characteristics of the user, appears beneficial.

Efficiency of Human Muscle – a Collaboration between Manchester and Copenhagen

Standard
A study based on earlier work by Professor Anthony J Sargeant and carried out under his direction by Richard Ferguson his PhD student working with colleagues in Copenhagen headed up by Jens Bangsbo.
Journal of Physiology
J Physiol. 2001 Oct 1;536(Pt 1):261-71.

1. It has been established that pulmonary oxygen uptake is greater during cycle exercise in humans at high compared to low contraction frequencies. However, it is unclear whether this is due to more work being performed at the high frequencies and whether the energy turnover of the working muscles is higher.

The present study tested the hypothesis that human skeletal muscle oxygen uptake and energy turnover are elevated during exercise at high compared to low contraction frequency when the total power output is the same.

2. Seven subjects performed single-leg dynamic knee-extensor exercise for 10 min at contraction frequencies of 60 and 100 r.p.m. where the total power output (comprising the sum of external and internal power output) was matched between frequencies (54 +/- 5 vs. 56 +/- 5 W; mean +/- S.E.M.). Muscle oxygen uptake was determined from measurements of thigh blood flow and femoral arterial – venous differences for oxygen content (a-v O(2) diff). Anaerobic energy turnover was estimated from measurements of lactate release and muscle lactate accumulation as well as muscle ATP and phosphocreatine (PCr) utilisation based on analysis of muscle biopsies obtained before and after each exercise bout.

3. Whilst a-v O(2) diff was the same between contraction frequencies during exercise, thigh blood flow was higher (P < 0.05) at 100 compared to 60 r.p.m. Thus, muscle V(O2) was higher (P < 0.05) during exercise at 100 r.p.m. Muscle V(O2) increased (P < 0.05) by 0.06 +/- 0.03 (12 %) and 0.09 +/- 0.03 l min(-1) (14 %) from the third minute to the end of exercise at 60 and 100 r.p.m., respectively, but there was no difference between the two frequencies.

4. Muscle PCr decreased by 8.1 +/- 1.7 and 9.1 +/- 2.0 mmol (kg wet wt)(-1), and muscle lactate increased to 6.8 +/- 2.1 and 9.8 +/- 2.5 mmol (kg wet wt)(-1) during exercise at 60 and 100 r.p.m., respectively. The total release of lactate during exercise was 48.7 +/- 8.8 and 64.3 +/- 10.6 mmol at 60 and 100 r.p.m. (not significant, NS). The total anaerobic ATP production was 47 +/- 8 and 61 +/- 12 mmol kg(-1), respectively (NS).

5. Muscle temperature increased (P < 0.05) from 35.8 +/- 0.3 to 38.2 +/- 0.2 degrees C at 60 r.p.m. and from 35.9 +/- 0.3 to 38.4 +/- 0.3 degrees C at 100 r.p.m. Between 1 and 7 min muscle temperature was higher (P < 0.05) at 100 compared to 60 r.p.m.

6. The estimated mean rate of energy turnover during exercise was higher (P < 0.05) at 100 compared to 60 r.p.m. (238 +/- 16 vs. 194 +/- 11 J s(-1)). Thus, mechanical efficiency was lower (P < 0.05) at 100 r.p.m. (24 +/- 2 %) compared to 60 r.p.m. (28 +/- 3 %). Correspondingly, efficiency expressed as work per mol ATP was lower (P < 0.05) at 100 than at 60 r.p.m. (22.5 +/- 2.1 vs. 26.5 +/- 2.5 J (mmol ATP)(-1)). 7. The present study showed that muscle oxygen uptake and energy turnover are elevated during dynamic contractions at a frequency of 100 compared with 60 r.p.m. It was also observed that muscle oxygen uptake increased as exercise progressed in a manner that was not solely related to the increase in muscle temperature and lactate accumulation