Research into human tendon properties by Costis Maganaris, Vassilios Baltzopolous and Anthony J Sargeant

Standard

Changes in Achilles tendon moment arm from rest to maximum isometric plantarflexion: In vivo observations in man

Article (PDF Available)inThe Journal of Physiology 510 ( Pt 3)(3):977-85 · August 1998with85 Reads

DOI: 10.1111/j.1469-7793.1998.977bj.x · Source: PubMed
  • 35.76 · Liverpool John Moores University
  • 38.82 · Liverpool John Moores University
  • 41.33 · VU University Amsterdam
    Abstract
    1. The purpose of the present study was to examine the effect of a plantarflexor maximum voluntary contraction (MVC) on Achilles tendon moment arm length.
    2. Sagittal magnetic resonance (MR) images of the right ankle were taken in six subjects both at rest and during a plantarflexor MVC in the supine position at a knee angle of 90 deg and at ankle angles of -30 deg (dorsiflexed direction), -15 deg, 0 deg (neutral ankle position), +15 deg (plantarflexed direction), +30 deg and +45 deg. A system of mechanical stops, support triangles and velcro straps was used to secure the subject in the above positions. Location of a moving centre of rotation was calculated for ankle rotations from -30 to 0 deg, -15 to +15 deg, 0 to +30 deg and +15 to +45 deg. All instant centres of rotation were calculated both at rest and during MVC. Achilles tendon moment arms were measured at ankle angles of -15, 0, +15 and +30 deg.
    3. At any given ankle angle, Achilles tendon moment arm length during MVC increased by 1-1.5 cm (22-27 %, P < 0.01) compared with rest. This was attributed to a displacement of both Achilles tendon by 0.6-1.1 cm (P < 0.01) and all instant centres of rotation by about 0.3 cm (P < 0.05) away from their corresponding resting positions.
    4. The findings of this study have important implications for estimating loads in the musculoskeletal system. Substantially unrealistic Achilles tendon forces and moments generated around the ankle joint during a plantarflexor MVC would be calculated using resting Achilles tendon moment arm measurements.

    Changes in Achilles tendon moment arm from rest to maximum isometric plantarflexion: In vivo observations in man (PDF Download Available). Available from: https://www.researchgate.net/publication/13623782_Changes_in_Achilles_tendon_moment_arm_from_rest_to_maximum_isometric_plantarflexion_In_vivo_observations_in_man [accessed May 1, 2017].

Advertisements

Research methods for measuring human muscle force

Standard
This research was carried out by the brilliant young Greek PhD student supervised by Professor Anthony Sargeant and Vasilios Baltzopoulos. The research makes an important contribution to methods for calculating muscle forces in-vivo in humans.
European Journal of Applied Physiology
Eur J Appl Physiol. 2000 Nov;83(4 -5):363-9

Abstract The aim of the present study was to estimate and compare in vivo measurement-based Achilles tendon moment arm lengths at rest and during isometric plantarflexion maximum voluntary contraction (MVC) using the centre-of-rotation (COR) and the tendon-excursion (TE) methods. Both methods were based on morphometric analysis of sagittal-plane magnetic resonance images of the foot. Using the COR method, moment arms were obtained at ankle angles from 15 degrees of dorsiflexion to 30 degrees of plantarflexion in steps of 15 degrees, digitizing the perpendicular distance from a moving centre of rotation in the tibio-talar joint to the Achilles tendon action line.

The TE method was based on measurement of calcaneal displacement along the tibial axis during 15 degrees rotations of the ankle joint, from 30 degrees of dorsiflexion to 45 degrees of plantarflexion. The two methods gave similar estimations at rest varying from 4.3 to 5.6 cm. Using the COR method, the Achilles tendon moment arm during MVC was larger by 1-1.5 cm (22-27%, P < 0.01) than the respective resting value. In contrast, no difference (P > 0.05) was found between the resting and MVC moment arm estimations of the TE method. The disagreement in moment arms during MVC may be attributed to differences in the assumptions made between the two methods. The TE method has more limitations than the COR method and its estimations during MVC should be treated with caution. Resting Achilles tendon moment arm estimations of the COR method should be multiplied by 1.22-1.27 when maximal isometric plantarflexion joint moments, musculotendon forces and stresses are predicted using modelling

Intrinsic strength of human muscle

Standard
In this research carried out in the Research Institute directed by Anthony Sargeant the very talented and productive Costis Maganaris used ultrasonography and MRI to determine intrinsic strength of human muscle in vivo.
Journal of Applied Physiology
J Appl Physiol. 2001 Mar;90(3):865-72

Abstract

In this study, we estimated the specific tensions of soleus (Sol) and tibialis anterior (TA) muscles in six men. Joint moments were measured during maximum voluntary contraction (MVC) and during electrical stimulation. Moment arm lengths and muscle volumes were measured using magnetic resonance imaging, and pennation angles and fascicular lengths were measured using ultrasonography.

Tendon and muscle forces were modeled. Two approaches were followed to estimate specific tension. First, muscle moments during electrical stimulation and moment arm lengths, fascicular lengths, and pennation angles during MVC were used (data set A). Then, MVC moments, moment arm lengths at rest, and cadaveric fascicular lengths and pennation angles were used (data set B). The use of data set B yielded the unrealistic specific tension estimates of 104 kN/m(2) in Sol and 658 kN/m(2) in TA. The use of data set A, however, yielded values of 150 and 155 kN/m(2) in Sol and TA, respectively, which agree with in vitro results from fiber type I-predominant muscles. In fact, both Sol and TA are such muscles. Our study demonstrates the feasibility of accurate in vivo estimates of human muscle intrinsic strength

Strength of Human Muscle

Standard

Abstract In this study, we estimated the specific tensions of soleus (Sol) and tibialis anterior (TA) muscles in six men. Joint moments were measured during maximum voluntary contraction (MVC) and during electrical stimulation. Moment arm lengths and muscle volumes were measured using magnetic resonance imaging, and pennation angles and fascicular lengths were measured using ultrasonography.

Tendon and muscle forces were modeled. Two approaches were followed to estimate specific tension. First, muscle moments during electrical stimulation and moment arm lengths, fascicular lengths, and pennation angles during MVC were used (data set A). Then, MVC moments, moment arm lengths at rest, and cadaveric fascicular lengths and pennation angles were used (data set B). The use of data set B yielded the unrealistic specific tension estimates of 104 kN/m(2) in Sol and 658 kN/m(2) in TA. The use of data set A, however, yielded values of 150 and 155 kN/m(2) in Sol and TA, respectively, which agree with in vitro results from fiber type I-predominant muscles. In fact, both Sol and TA are such muscles. Our study demonstrates the feasibility of accurate in vivo estimates of human muscle intrinsic strength

Repeated contractions affect the geometry of muscle and hence the force generated

Standard
This study carried out by Costis Maganaris demonstrated how repeated contractions result in tendon creep – which by altering the geometry of human muscle changes the maximum force that is delivered.
Journal of Applied Physiology. 2002 Dec;93(6)

Abstract The aim of this study was to investigate the effect of repeated contractions on the geometry of human skeletal muscle. Six men performed two sets (sets A and B) of 10 repeated isometric plantarflexion contractions at 80% of the moment generated during plantarflexion maximal voluntary contraction (MVC), with a rest interval of 15 min between sets. By use of ultrasound, the geometry of the medial gastrocnemius (MG) muscle was measured in the contractions of set A and the displacement of the MG tendon origin in the myotendinous junction was measured in the contractions of set B.

In the transition from the 1st to the 10th contractions, the fascicular length at 80% of MVC decreased from 34 +/- 4 (means +/- SD) to 30 +/- 3 mm (P < 0.001), the pennation angle increased from 35 +/- 3 to 42 +/- 3 degrees (P < 0.001), the myotendinous junction displacement increased from 5 +/- 3 to 10 +/- 3 mm (P < 0.001), and the average fascicular curvature remained constant (P > 0.05) at approximately 4.3 m(-1). No changes (P > 0.05) were found in fascicular length, pennation angle, and myotendinous junction displacement after the fifth contraction. Electrogoniometry showed that the ankle rotated by approximately 6.5 degrees during contraction, but no differences (P > 0.05) were obtained between contractions. The present results show that repeated contractions induce tendon creep, which substantially affects the geometry of the in-series contracting muscles, thus altering their potential for force and joint moment generation.

Muscle tendon properties in Spinal cord injured humans

Standard
This research was carried out in Amsterdam but was a collaboration by the two research groups led by Professor Anthony J Sargeant – one group was based in the UK and other in The Netherlands.
Muscle Nerve. 2005 Jul;32(1):73-80
Institute for Fundamental and Clinical Human Movement Sciences, Vrije University, van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands.

Muscles of individuals with a spinal cord injury (SCI) exhibit an unexpected leftward shift in the force (torque)-frequency relationship. We investigated whether differences in torque-angle relationships between SCI and able-bodied control muscles could explain this shift. Electrically stimulated knee-extensor contractions were obtained at knee flexion angles of between 30 degrees and 90 degrees.

Torque-frequency relationships were obtained at 30 degrees, 90 degrees, and optimum angle. Optimum angle was not different between groups but SCI-normalized torques were lower at the extreme angles. At all angles, SCI muscles produced higher relative torques at low stimulation frequencies. Thus, there was no evidence of a consistent change in the length of paralyzed SCI muscles, and the anomalous leftward shift in the torque-frequency relationship was not the result of testing the muscle at a relatively long length. The results provide valuable information about muscle changes occurring in various neurological disorders.

Changes in tendon properties following spinal cord injury in humans

Standard
This was a collaborative study between the two research groups led by Professor Anthony J Sargeant. The groups were based in the UK and in Amsterdam.
Muscle and Nerve. 2006 Jan;33(1):85-92

To gain insight into the adaptive response of human tendon to paralysis, we compared the mechanical properties of the in vivo patellar tendon in six men who were spinal cord-injured (SCI) and eight age-matched, able-bodied men. Measurements were taken by combining dynamometry, electrical stimulation, and ultrasonography. Tendon stiffness and Young’s modulus, calculated from force-elongation and stress-strain curves, respectively, were lower by 77% (P < 0.01) and 59% (P < 0.05) in the SCI than able-bodied subjects. The cross-sectional area (CSA) of the tendon was 17% smaller (P < 0.05) in the SCI subjects, but there was no difference in tendon length between the two groups. Our results indicate that paralysis causes substantial deterioration of the structural and material properties of tendon. This needs to be taken into consideration in the design of electrical stimulation protocols for rehabilitation and experimental purposes, and when interpreting changes in the contractile speed of paralyzed muscle.