Spinal cord injuries – paralysed leg muscles

Standard

HL Gerrits carried out this research under the direction of Professor Anthony J Sargeant (Amsterdam) and Professor Maria Hopman (Nijmegen). It was part of a research collaboration on spinal cord injury between the two Universities (Vrije University Amsterdam, and the Radboud University, Nijmegen – in the Netherlands). Ms Gerrits went on to submit this published research paper as a chapter in her PhD thesis submitted under the supervision of Professor Tony Sargeant in the Vrije University.

 

Reproducibility of contractile properties of the human paralysed and non-paralysed quadriceps muscle

Gerrits HL, Maria T Hopman, Anthony J Sargeant, Arnold de Haan.

Clinical Physiology

Clin Physiol. 2001 Jan;21(1):105-13

Abstract
This study assessed the reproducibility of electrically evoked, isometric quadriceps contractile properties in eight people with spinal cord injury (SCI) and eight able-bodied (AB) individuals. Over all, the pooled coefficients of variation (CVps) in the SCI group were significantly lower (ranging from 0.03 to 0.15) than in the AB group (ranging from 0.08 to 0.21) (P<0.05). Furthermore, in all subjects, the variability of force production increased as stimulation frequency decreased (P<0.01). In subjects with SCI, variables of contractile speed are clearly less reproducible than tetanic tension or resistance to fatigue. Contractile properties of quadriceps muscles of SCI subjects were significantly different from that of AB subjects. Muscles of people with SCI were less fatigue resistant (P<0.05) and produced force-frequency relationships that were shifted to the left, compared with AB controls (P<.01). In addition, fusion of force responses resulting from 10 Hz stimulation was reduced (P<.05) and speed of contraction (but not relaxation) was increased (P<0.05), indicating an increased contractile speed in paralysed muscles compared with non-paralysed muscles. These results correspond with an expected predominance of fast glycolytic muscle fibres in paralysed muscles. It is concluded that quadriceps dynamometry is a useful technique to study muscle function in non-paralysed as well as in paralysed muscles. Furthermore, these techniques can be reliably used, for example, to assess therapeutic interventions on paralysed muscles provided that expected differences in relative tetanic tension and fatigue resistance are larger than approximately 5% and differences in contractile speed are larger than approximately 15%
Advertisements

Functional Electrical Stimulation of leg muscles in people with spinal cord injury

Standard

This research publication in the medical journal ‘Spinal Cord’ formed part of a research programme carried out by HL Gerrits under the direction and supervision of Professor Maria Hopman of Radboud University of Nijmegen, Professor Anthony J Sargeant and Arnold de Haan of the Vrije University of Amsterdam. The publication formed a chapter in the PhD thesis of Ms Gerrits.

Altered contractile properties of the quadriceps muscle in people with spinal cord injury following functional electrical stimulated cycle training

Gerrits HL, Arnold de Haan, Anthony J Sargeant, Dallmeijer A, Maria T Hopman.

Spinal Cord. 2000 Apr;38(4):214-223

Abstract
STUDY DESIGN: A longitudinal training study.
OBJECTIVES: To assess if contractile speed and fatigability of paralysed quadriceps muscles in individuals with spinal cord injury (SCI) can be altered by functional electrical stimulation leg cycle ergometry (FES-LCE) training.
SETTINGS: The Sint Maartenskliniek rehabilitation centre and the University of Nijmegen, Nijmegen, the Netherlands.
METHODS: Contractile properties of the quadriceps muscle were studied in seven people with motor-complete SCI who participated in a FES-LCE training program. Subjects trained for 30 min, three times per week for 6 weeks. Contractile speed and fatigue characteristics of electrically stimulated isometric contractions were compared before and after 6 weeks of FES-LCE.
RESULTS: Fatigue resistance improved following FES-LCE training as indicated by the higher forces maintained in response to repetitive electrical stimulation. In contrast with an improved fatigue resistance, the maximal rate of force rise was unaffected, the speed of relaxation increased and the fusion of a 10 Hz force signal decreased. Furthermore, the force-frequency relationship shifted to the right at low stimulation frequencies, indicated by a decline in the ratio of 1 and 100 Hz force responses as well as the ratio of 10 and 100 Hz force responses.
CONCLUSION: FES-LCE training can change the physiological properties of the quadriceps muscle in people with SCI. Even after a short period of training, the stimulated muscles become more resistant to fatigue. Furthermore, the increased speed of relaxation and associated decreased fusion and altered force-frequency relationship following training may be related to adaptations in the calcium handling processes, which reflect an early response of long-term disused muscles.

Changes in mechanical leverage of muscles occur as a result of contraction making modelling uncertain

Standard

Part of an important series of research publications by the talented Costis Maganaris (now a deservedly full professor in his own right) as part of his PhD which was supervised by Professors Anthony Sargeant and Vasilios Baltzopoulos

Changes in the tibialis anterior tendon moment arm from rest to maximum isometric dorsiflexion: in vivo observations in man

Costis N Maganaris, Vassilios Baltzopoulos, Anthony J Sargeant.

Clinical Biomechanics
Clin Biomech (Bristol, Avon). 1999 Nov;14(9):661-6
Abstract
OBJECTIVE: In the present study, we examined the hypothesis that the tibialis anterior tendon moment arm increases during maximum isometric dorsiflexion as compared with rest.
BACKGROUND: In musculoskeletal modelling applications, moment arms from passive muscles at rest are assumed representative of those measured during isometric muscle contraction. The validity of this assumption is questionable in musculotendon actuators enclosed by retinacular systems as in tibialis anterior.
DESIGN AND METHODS: Sagittal-plane magnetic resonance images of the right ankle were taken in six subjects at rest and during maximum isometric dorsiflexion at six ankle angles between dorsiflexion and plantarflexion having the body placed in the supine position and the knee flexed at 90 degrees. Instant centres of rotation in the tibio-talar joint, tibialis anterior tendon action lines and moment arms were identified in the sagittal plane at ankle angles of -15 degrees, 0 degrees,+15 degrees and +30 degrees at rest and during maximum isometric dorsiflexion.
RESULTS: At any given ankle angle, the tibialis anterior tendon moment arm during maximum isometric dorsiflexion increased by 0.9-1.5 cm (P<0.01) compared with rest. This was attributed to a displacement of both tibialis anterior tendon action line by 0.8-1.2 cm (P<0.01) and all instant centres of rotation by 0.3-0.4 cm (P<0. 01) distally in relation to their corresponding resting positions.
CONCLUSIONS AND IMPLICATIONS: The assumption that the tibialis anterior tendon moment arm does not change from rest to maximum isometric dorsiflexion is invalid. Erroneous tendon forces, muscle stresses and joint moments by as much as 30% would be calculated using resting tibialis anterior tendon moment arms in the moment equilibrium equation around the ankle joint during maximum isometric dorsiflexion. RELEVANCE: A substantial increase in the tibialis anterior tendon moment arm occurs from rest to maximum isometric dorsiflexion. This needs to be taken into consideration when using planimetric musculoskeletal modelling for analysing maximal static ankle dorsiflexion loads.

Measurement of high-energy phosphates in tiny fragments of human muscle fibres

Standard

This research method was  developed in the group headed by Professor Anthony J Sargeant in Amsterdam. Arnold de Haan had developed the basis of the technique in the 1980s as part of his own PhD work. This was subsequently refined to enable very small fragments of human muscle fibre obtained by needle biopsy to be analysed. The present research paper describes that refined techniques and its sensitivity. The work formed part of the PhD thesis the outstanding Greek PhD student, Christina Karatzaferi, who was supervised by Tony Sargeant and Arnold de Haan.

Improved high-performance liquid chromatographic assay for the determination of “high-energy” phosphates in mammalian skeletal muscle. Application to a single-fibre study in man

Christina Karatzaferi, Arnold de Haan, Carla Offringa, Anthony J Sargeant.

Journal of Chromotography

J Chromatogr B Biomed Sci Appl. 1999 Jul 9;730(2):183-91
Abstract
A sensitive and reproducible method for the determination of adenine nucleotides (ATP, IMP) and creatine compounds [creatine (Cr), phosphocreatine (PCr)] in freeze-dried single human muscle fibre fragments is presented. The method uses isocratic reversed-phase high-performance liquid chromatography of methanol extracts. Average retention times (min) of ATP, IMP and PCr, Cr from standard solutions were 10.6+/-0.42, 2.11+/-0.06 (n=6) and 10.5+/-0.31 and 1.19+/-0.02 (n=9), respectively. Detection limits in extracts from muscle fibre fragments were 2.0, 1.0, 3.0 and 2.0 mmol/kg dm, respectively. The assay was found successful for analysis of fibre-fragments weighing > or = 1 microg.

Post-Polio Syndrome

Standard

The data collection and analysis of this research study was largely the work of Frans Nollet and Anita Beelen. Other senior authors provided input at various stages of planning and writing. Professor Anthony J Sargeant was the supervisor for the PhD thesis of which this work formed a part.

Disability and functional assessment in former polio patients with and without postpolio syndrome

Frans Nollet, Anita Beelen, Prins MH, Marianne de Visser, Anthony J Sargeant, Lankhorst GJ, de Jong BA 

Archives of Physical Medicine and Rehabilitation

Arch Phys Med Rehabil. 1999 Feb;80(2):136-143
Abstract
OBJECTIVES: To compare perceived health problems and disability in former polio subjects with postpolio syndrome (PPS) and those without postpolio syndrome (non-PPS), and to evaluate perceived health problems, disability, physical performance, and muscle strength.
DESIGN: Cross-sectional survey; partially blinded data collection.
SUBJECTS: One hundred three former polio subjects, aged 32 to 60yrs. This volunteer sample came from referrals and patient contacts. Criterion for PPS: new muscle weakness among symptoms.
MAIN OUTCOME MEASURES: Nottingham Health Profile (NHP), adapted D-code of the International Classification of Impairments, Disabilities and Handicaps, performance test, and muscle strength assessment.
RESULTS: PPS subjects (n = 76) showed higher scores (p < .001) than non-PPS subjects (n = 27) within the NHP categories of physical mobility, energy, and pain. On a 16-item Polio Problems List, 78% of PPS subjects selected fatigue as their major problem, followed by walking outdoors (46%) and climbing stairs (41%). The disabilities of PPS subjects were mainly seen in physical and social functioning. No differences in manually tested strength were found between patient groups. PPS subjects needed significantly more time for the performance test than non-PPS subjects and their perceived exertion was higher. Perceived health problems (NHP-PhysMobility) correlated significantly with physical disability (r = .66), performance-time (r = .54), and muscle strength (r = .38). With linear regression analysis, 54% of the NHP-PhysMobility score could be explained by the performance test (time and exertion), presence of PPS, and muscle strength, whereas strength itself explained only 14% of the NHP-PhysMobility score.
CONCLUSIONS: PPS subjects are more prone to fatigue and have more physical mobility problems than non-PPS subjects. In former polio patients, measurements of perceived health problems and performance tests are the most appropriate instruments for functional evaluation

Strength of leg muscles in human – effects of coactivation of antagonistic muscles

Standard

This research was part of work completed by the brilliant PhD student, Costis Maganaris (now a full Professor in Liverpool), who was supervised by Professor Vasilios Baltzopoulos and Anthony Sargeant.

Differences in human antagonistic ankle dorsiflexor coactivation between legs; can they explain the moment deficit in the weaker plantarflexor leg

CONSTANTINOS N. MAGANARIS, VASILIOS BALTZOPOULOS, ANTHONY J. SARGEANT

Experimental Physiology
Exp Physiol. 1998 Nov;83(6):843-55
The present study examined the hypothesis that the antagonistic ankle dorsiflexor coactivation level during maximum isometric voluntary plantarflexion (MVC) is a function of ankle angle.
Six male subjects generated plantarflexion and dorsiflexion MVC trials at ankle angles of -15 deg (dorsiflexed direction), 0 deg (neutral position), +15 deg (plantarflexed direction) and +30 deg having the knee flexed at an angle of 90 deg. In all contractions surface EMG measurements were taken from tibialis anterior and soleus which were considered representative muscles of all dorsiflexors and plantarflexors, respectively. Antagonistic dorsiflexor coactivation was expressed as normalized EMG and moment. Calculations of the antagonistic dorsiflexor moment were based on the tibialis anterior EMG-dorsiflexor moment relationship from contractions at 50, 40, 30, 20 and 10 % of the dorsiflexion MVC moment.
In both legs dorsiflexor coactivation level followed an open U-shaped pattern as a function of ankle angle. Differences of 9 and 14 % (P < 0.05) were found in the measured net plantarflexion MVC moment between legs at ankle angles of -15 and +30 deg, respectively. No difference (P > 0.05) was found in the calf circumference between legs. Differences were found in the antagonistic dorsiflexor coactivation between legs at ankle angles of -15 and +30 deg. In the weaker leg the antagonistic EMG measurements were higher by 100 and 45 % (P < 0.01) and the estimated antagonistic moments were higher by 70 and 43 % (P < 0.01) compared with the weaker leg at -15 and +30 deg, respectively. This finding was associated with a decreased range of motion (ROM) in the weaker leg (14 %, P < 0.01), such that no difference (P > 0.05) was found in dorsiflexor antagonistic coactivation between legs at end-range ankle angles.
The findings of the study
(i) have to be taken into consideration when estimating musculoskeletal loads in the lower extremity,
(ii) imply that stretching training can result in a stronger plantarflexion at end-range ankle angles through inhibition of the dorsiflexors, and
(iii) imply a neural drive inadequacy during a plantarflexion MVC at end-range angles

In vivo measurements of the triceps surae complex architecture in man: implications for muscle function

Standard

Costis Maganaris was a brilliant PhD student (now Professor) supervised by Vasilios Baltzopoulos and Professor Anthony J Sargeant. This important study published in Journal of Physiology investigated how changes in muscle architecture during muscle contraction of human triceps surae muscle complex can distort calculations of mechanical output.

In vivo measurements of the triceps surae complex architecture in man: implications for muscle function

Constantinos N Maganaris, Vasilios Baltzopoulos, Anthony J Sargeant.

Journal of Physiology
J Physiol. 1998 Oct 15;512 ( Pt 2):603-14
1. The objectives of this study were to (1) quantify experimentally in vivo changes in pennation angle, fibre length and muscle thickness in the triceps surae complex in man in response to changes in ankle position and isometric plantarflexion moment and (2) compare changes in the above muscle architectural characteristics occurring in the transition from rest to a given isometric plantarflexion intensity with the estimations of a planimetric muscle model assuming constant thickness and straight muscle fibres.
2. The gastrocnemius medialis (GM), gastrocnemius lateralis (GL) and soleus (SOL) muscles of six males were scanned with ultrasonography at different sites along and across the muscle belly at rest and during maximum voluntary contraction (MVC) trials at ankle angles of -15 deg (dorsiflexed direction), 0 deg (neutral position), +15 deg (plantarflexed direction) and +30 deg. Additional images were taken at 80, 60, 40 and 20% of MVC at an ankle angle of 0 deg.
3. In all three muscles and all scanned sites, as ankle angle increased from -15 to +30 deg, pennation increased (by 6-12 deg, 39-67%, P < 0.01 at rest and 9-16 deg, 29-43%, P < 0.01 during MVC) and fibre length decreased (by 15-28 mm, 32-34%, P < 0.01 at rest and 8-10 mm, 27-30%, P < 0.05 during MVC). Thickness in GL and SOL increased during MVC compared with rest (by 5-7 mm, 36-47%, P < 0.01 in GL and 6-7 mm, 38-47%, P < 0.01 in SOL) while thickness of GM did not differ (P > 0.05) between rest and MVC.
4. At any given ankle angle the model underestimated changes in GL and SOL occurring in the transition from rest to MVC in pennation angle (by 9-12 deg, 24-38%, P < 0.01 in GL and 9-14 deg, 25-28%, P < 0.01 in SOL) and fibre length (by 6-15 mm, 22-39%, P < 0.01 in GL and 6-8 mm, 23-24%, P < 0.01 in SOL).
5. The findings of the study indicate that the mechanical output of muscle as estimated by the model used may be unrealistic due to errors in estimating the changes in muscle architecture during contraction compared with rest